Environmental Protection Agency

measuring hydrocarbons when testing with oxygenated fuels.

- (b) Component requirements. We recommend that you use a FID analyzer that meets the specifications in Table 1 of §1065.205. Note that your FID-based system for measuring THC, THCE, or \check{CH}_4 must meet all of the verifications for hydrocarbon measurement in subpart D of this part, and it must also meet the linearity verification in §1065.307. You may use a FID that has compensation algorithms that are functions of other gaseous measurements and the engine's known or assumed fuel properties. The target value for any compensation algorithm is 0.0% (that is, no bias high and no bias low), regardless of the uncompensated signal's bias.
- (c) Heated FID analyzers. For dieselfueled engines, two-stroke spark-ignition engines, and four-stroke spark-ignition engines below 19 kW, you must use heated FID analyzers that maintain all surfaces that are exposed to emissions at a temperature of (191 \pm 11) °C.
- (d) FID fuel and burner air. Use FID fuel and burner air that meet the specifications of § 1065.750. Do not allow the FID fuel and burner air to mix before entering the FID analyzer to ensure that the FID analyzer operates with a diffusion flame and not a premixed flame.
- (e) Methane. FID analyzers measure total hydrocarbons (THC). To deternonmethane hydrocarbons (NMHC), quantify methane, CH_4 , either with a nonmethane cutter and a FID analyzer as described in §1065.265, or with a gas chromatograph as described in §1065.267. Instead of measuring methane, you may assume that 2% of measured total hydrocarbons is methane, as described in §1065.660. For a FID analyzer used to determine NMHC, determine its response factor to CH₄, RF_{CH4} , as described in §1065.360. Note that NMHC-related calculations are described in §1065.660.

§ 1065.265 Nonmethane cutter.

(a) Application. You may use a nonmethane cutter to measure CH_4 with a FID analyzer. A nonmethane cutter oxidizes all nonmethane hydrocarbons to CO_2 and H_2O . You may use a non-

methane cutter for raw or diluted exhaust for batch or continuous sampling.

- (b) System performance. Determine nonmethane-cutter performance as described in §1065.365 and use the results to calculate NMHC emission in §1065.660.
- (c) *Configuration.* Configure the nonmethane cutter with a bypass line for the verification described in §1065.365.
- (d) Optimization. You may optimize a nonmethane cutter to maximize the penetration of CH_4 and the oxidation of all other hydrocarbons. You may humidify a sample and you may dilute a sample with purified air or oxygen (O_2) upstream of the nonmethane cutter to optimize its performance. You must account for any sample humidification and dilution in emission calculations.

EFFECTIVE DATE NOTE: At 73 FR 37300, June 30, 2008, §1065.265 was amended by revising paragraph (c), effective July 7, 2008. For the convenience of the user, the revised text is set forth as follows:

$\S 1065.265$ Nonmethane cutter.

* * * * *

(c) Configuration. Configure the nonmethane cutter with a bypass line if it is needed for the verification described in $\S 1065.365$.

§ 1065.267 Gas chromatograph.

- (a) Application. You may use a gas chromatograph to measure CH_4 concentrations of diluted exhaust for batch sampling. While you may also use a nonmethane cutter to measure CH_4 , as described in $\S 1065.265$, use a reference procedure based on a gas chromatograph for comparison with any proposed alternate measurement procedure under $\S 1065.10$.
- (b) Component requirements. We recommend that you use a gas chromatograph that meets the specifications in Table 1 of §1065.205, and it must also meet the linearity verification in §1065.307.